A Classification of Myelodysplastic Syndromes That Aids Clinical Decision-Making

Mario Cazzola, MD

Fondazione IRCCS Policlinico San Matteo

& University of Pavia, Pavia, Italy

- No potential conflict of interest to disclose
- No discussion of off-label uses

Classification is the Language of Medicine

 Classification is the language of medicine: diseases must be described, defined, and named before they can be diagnosed, treated, and studied

The Classification Schism in Hematopathology

2022:

- International Consensus Classification
- WHO-5

Aster. J Clin Oncol. 2023 Mar 10;41(8):1523-1526

The Molecular Revolution in MDS

2009: Somatic mutation of TET2 in myeloid malignancies (NEJM. 2009;360:2289-3019)

2022: Genomic landscape of MDS (NEJM Evid 2022;1:7)

The Impact of Next-Generation Sequencing on Diagnosis, Classification, and Prognostication of Myeloid Malignancies

Conservatives (*morphology*) vs Progressives (*genomics*)

Gurbuxani et al. Am Soc Clin Oncol Educ Book. 2023 Jun;43:e390026

MDS with Ring Sideroblasts

Bennett et al. Br J Haematol. 1982 Jun;51(2):189-99

MDS with Ring Sideroblasts: Prognostic Relevance of Morphology

Malcovati et al. J Clin Oncol. 2005 Oct 20;23(30):7594-603

Myelodysplastic Syndrome with Ring Sideroblasts

Papaemmanuil et al. N Engl J Med. 2011 Oct 13;365(15):1384-95

Clinical Significance of *SF3B1* Mutation in MDS

Malcovati et al. Blood. 2011 Dec 8;118(24):6239-46

Clinical Significance of *SF3B1* Mutation in MDS with Ring Sideroblasts

Malcovati et al Blood. 2015 Jul 9;126(2):233-41

Mutational Landscape of MDS with Ring Sideroblasts

Todisco et al. Clin Cancer Res. 2023 Oct 13;29(20):4256-4267

Mutational Landscape of MDS with Ring Sideroblasts: Clinical Correlates

Todisco et al. Clin Cancer Res. 2023 Oct 13;29(20):4256-4267

Genomic Subtypes of MDS with Ring Sideroblasts

Molecular Taxonomy of MDS and Its Clinical Implications

- 3,233 treatment-naive patients with MDS or related neoplasms
- Gene mutations, CNAs, and cnLOH events were derived from targeted capture DNA sequencing of a 152-gene panel enriched with genome-wide CNA probes

Molecular Taxonomy of MDS and Its Clinical Implications

	Molecular subgroup	Median overall survival (years)	Risk of leukemic transformation	Clinical implications
	MDS with no recurrent genetic event	>8	Very low	Non clonal disorder
A	SF3B1-mutant MDS	>5	Low	Ring sideroblasts, anemia responsive to luspatercept
\sim	ZRSR2-mutant MDS	>5	Low	Male patients
<u> </u>	Molecularly NOS MDS	>4	Low	
	CCUS-like MDS	>4	Low	Cytopenia related to clonal hematopoiesis
	MDS with del(5q)	>4	Low	Responsive to lenalidomide
	MDS with biallelic TET2 mutation	>4	Low	
	DDX41-mutant MDS	2-4	High	Potential germline predisposition
	U2AF1-mutant MDS (37)	2-4	High	
	U2AF1-mutant MDS (154)	2-4	High	
	SRSF2-mutant MDS	2-4	High	
	BCOR/L1-mutant MDS	2-4	High	
	IDH-STAG2-mutant MDS	0-2	High	
	MDS with t(1;7)	0-2	High	
	-7/SETBP1-mutant MDS	0-2	High	
	EZH2-ASXL1-mutant MDS	0-2	High	
	AML-like MDS	0-2	Very high	
3	TP53-complex MDS	0-2	Very high	Poorly responsive to any currently available treatment

SF3B1-Mutant MDS

SF3B1-Mutant Myeloid Neoplasms

Years

- Genomic profiling allows the identification of MDS molecular subgroups associated with distinct clinical phenotypes and outcomes.
- Developing a classification of MDS based on genomic classes may significantly benefit clinical decision-making.