Pre-MDS states: CHIP, CCUS, ICUS – How to manage in the clinic?

08 Dec 2023

MDS Foundation Breakfast Symposium Annual American Society of Hematology Meeting, San Diego, CA

Michael R. Savona, MD George and Beverly Rawlings Director of Hematology Research and the Early Therapy Program Professor of Medicine and Cancer Biology Vanderbilt University School of Medicine

Disclosures

I have the following financial relationships to disclose:

- Advisory and consulting: BMS, CTI, Forma, Geron, GSK, Karyopharm, Ryvu, Taiho, Takeda;
- *Research Support:* ALX Oncology, Astex, Incyte, Takeda, TG Therapeutics;
- *Equity:* Empath Biosciences, Karyopharm, Ryvu;
- *Licensing Agreement:* Boehringer-Ingelheim

Acknowledgements

VANDERBILT-INGRAM CANCER CENTER

Pawan Bhatt

Chad Potts, MS

Ferrell Laboratory

P. Brent Ferrell, MD

The Patients

The Families

The Mice

Savona Laboratory Haley Ramsey, PhD Melissa Fischer, PhD **Alex Silver, MSTP Donovan Brown, BA** Zach Copeland, MS Brianna Smith, MD, MS Pia Arrate, MS Agnes Gorska, MS Matt Villaume, MD, PhD Dee Dee Fuller Sarah Olmstead, BS Sarah Ginter, BS

Bick Laboratory

Sydney Olson

Xu Laboratory

Nicholas Strayer, MS

Yajing Li, MS

Yu Wang, PhD

Alex Bick, MD, PhD

Brett Heimlich, MD, PhD

Caitlyn Vlasschert, MD

CHIVE TEAM

Alexander Bick, MD, Ph Ashwin Kishtagari, MD Brent Ferrell, MD David Slosky, MD Eiman Jahagnir, MD Yaomin Xu, MD

Beverly and George Rawlings Directorship EvansMDS

A funding initiative of The Edward P. Evans Foundation

NIH

NATIONAL CANCER

INSTITUTE

Biff Rittenberg

Foundation

Adventure Allie **Discovery Grant**

LEUKEMIA & LYMPHOMA SOCIETY

fighting blood cancers

T.J. Martell Foundation Music's Promise for Curing Cancer

Clonal Hematopoiesis of Indeterminate Potential (CHIP) is 3-6% at 60yo

While CH in small variant allele fractions are ubiquitous, the term of CHIP refers to clones present in a substantial number of cells (usually >2% VAF), and repeatedly occur in genes related to epigenetic function, splicing, and DNA damage repair

VANDERBILT WUNIVERSITY MEDICAL CENTER "CHIP Genes" = Commonly mutated Genes in Myeloid Disease

- Though incidence is different than what is seen in myeloid disease
- Many of the genes are implicated in one of the following roles:
 - 1. Epigenetic regulation
 - 2. Splicing
 - 3. DNA damage response

DNMT3A-mutant monocytes display robust inflammatory signatures

Abplanalp et al., Circ. Res., 2021

Mutant TET2 boosts inflammatory signaling in primary monocytes

VANDERBILT WUNIVERSITY MEDICAL CENTER

Heimlich et al., bioRxiv, 2022

Age associated CH and a model of malignant transformation

1. Specific *Mutation* Dependent

1.0 * 0.9 0.8 Cumulative incidence 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 24 120 144 168 192 Time (months)

2. VAF Dependent

1.0 * 0.9 0.8 Cumulative incidence 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 24 120 144 168 192 Time (months)

3. Combination/Signature Dependent

4. Probably variant dependent

1.0 * 0.9 0.8 Cumulative incidence 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 24 120 144 168 192 Time (months)

4. Probably variant dependent

815 DNMT3A R882H Exhibits Greater Inflammatory Potential Than R882C in Primary Hematopoietic Stem and Progenitor Cell Knock-in Model and Population Data

Program: Oral and Poster Abstracts Type: Oral Session: 503. Clonal Hematopoiesis, Aging and Inflammation: From Omics to Discoveries Hematology Disease Topics & Pathways: Research, Translational Research, CHIP, genomics, hematopoiesis, Biological Processes, Technology and Procedures, gene editing, Study Population, Human, omics technologies

Monday, December 11, 2023: 3:45 PM

Alexander Silver MSTP Student Vanderbilt SOM

Published April 25, 2023 NEJM Evid 2023; 2 (5) DOI: 10.1056/EVIDoa2200310

ORIGINAL ARTICLE

Prediction of Risk for Myeloid Malignancy in Clonal Hematopoiesis

Lachelle D. Weeks, M.D., Ph.D.,^{1,2,3} Abhishek Niroula, Ph.D.,^{4,5} Donna Neuberg, Sc.D.,⁶ Waihay Wong, M.D., Ph.D.,⁷ R. Coleman Lindsley, M.D., Ph.D.,^{1,2} Marlise R. Luskin, M.D., M.S.C.E.,^{1,2} Nancy Berliner, M.D.,^{2,8} Richard M. Stone, M.D.,^{1,2} Daniel J. DeAngelo, M.D., Ph.D.,^{1,2} Robert J. Soiffer, M.D.,^{1,2,3} Md Mesbah Uddin, M.Sc., Ph.D.,^{9,10} Gabriel Griffin, M.D.,^{6,7} Caitlyn Vlasschaert, M.D., M.Sc.,¹¹ Christopher J. Gibson, M.D.,^{1,2} Siddhartha Jaiswal, M.D., Ph.D.,¹² Alexander G. Bick, M.D., Ph.D.,¹³ Luca Malcovati, M.D.,^{14,15} Pradeep Natarajan, M.D., M.M.S.C.,^{2,9,10} and Benjamin L. Ebert, M.D., Ph.D.,^{1,2,3,4,16}

CHRS edifies earlier conclusions on CCUS

Number at Risk

Time (yr)	0	2	4	6	8	10	12
CCUS	858	834	798	764	728	697	230
CHIP	10,479	10,407	10,238	10,087	9,888	9,655	3,893
No CHIP/CCUS	182,404	181,674	180,407	178,734	176,774	174,453	72,254

Objective hematologic parameter and mutational testing informs model

Recurvise partitioning based on incidence of MN

Weeks et al. NEJM Evid. 2023

Recurvise partitioning based on incidence of MN

Weeks et al. NEJM Evid. 2023

Model partitions well by CHRS risk of transformation

Years

Number at Risk

Time (yr)	0	2	4	6	8	10	12
High risk	123	109	90	72	60	43	15
Int. risk	1,196	1,174	1,125	1,080	1,016	961	336
Low risk	10,018	9,958	9,821	9,699	9,540	9,348	3,772
No CHIP/CCUS	182,406	181,674	180,407	178,734	176,174	174,455	72,254

www.chrsapp.com

<u>Clonal Hematopoiesis and Inflammation in the VasculaturE (CHIVE)</u>

Cooperative Biorepository and Registry for CH

09 Dec 2023 MDS Foundation Breakfast Symposium - Annual American Society of Hematology Meeting, San Diego, CA

What is *CHIVE*?

Registry following the natural history of CH

- CH and *at risk* for CH
- dB with clinical features captured

Biorepository for storing samples for patients at risk/with CH

- *Sequential* sample collection of peripheral blood, bone marrow (when available)
- IRB approval for a variety of cellular assays and genotyping to further understand the pathophysiology of CH

CHIVEseq: Twist CH Assay

- This assay uses Twist bioscience hybrid capture technology to sequence coding sequences of 24
 CHIP genes (or portions of genes) known to cause CHIP at >500x depth.
- The genes include: ASXL1, ASXL2, BRCC3, CBL, DNMT3A, ETNK1, GNAS, GNB1, IDH1, IDH2, JAK2, KIT, KRAS, MPL, NRAS, PPM1D, SETBP1, SF3B1, SRSF2, TET2, TP53, U2AF1, ZBTB33, ZNF318.
- The assay can be run for as low as 1/10th cost of commercial sequencing panels

CHIVE (ver1.0) Schema

	CH - (n=82)	CH + (n=99)	p value			
Sex						
Male Female	24 (29.3) 58 (70.7)	50 (50.5) 49 (49.5)	0.009			
Age						
18-29 30-49 50-64 65+	3 (3.7) 14 (17.1) 27 (32.9) 38 (46.3)	0 (0.0) 1 (1.0) 24 (24.8) 73 (74.2)				
Median +/- IQR	62.9 (51.5 - 72.7)	71.9 (64.0 - 77.5)	<0.001			
Body Mass Index (BMI)						
<18.5 18.5 - 24.9 25.0 - 29.9 30.0 - 34.9 >35	3 (3.7) 23 (28.0) 28 (34.2) 17 (20.7) 11 (13.4)	1 (1.0) 22 (22.7) 34 (35.1) 23 (23.7) 17 (17.5)				
Median +/- IQR	27.4 (24.1 - 32.4)	28.9 (25.4 - 32.1)	0.253			

Background Demographics

- More male
- Older
- Trend to higher BMI

CHIVE – Gene Variant Frequencies similar to retrospective analyses

Shannon M, Heimlich B, et al. Under Revision. 2023

	CH -	CH +	Unit	p value
Blood Counts				
White Blood Cells Hemoglobin Hematocrit Platelet	6.8 (5.2 - 8.4) 13.3 (12.3 - 14.6) 42.0 (37.0 - 44.0) 245.0 (198.0 - 284.0)	6.2 (4.5 - 8.1) 12.9 (11.4 - 14.1) 39.0 (35.0 - 43.0) 203.0 (163.0 - 262.0)	x10³/mcL gm/dL % x10³/mcL	0.455 0.136 0.134 0.093
Kidney Function				
BUN Creatinine CKD Diagnosis, n(%)	16.0 (12.0 - 21.0) 0.90 (0.76 - 1.11) 15 (18.3)	18.0 (14.0 - 23.0) 0.97 (0.84 - 1.29) 41 (41.2)	mg/dL mg/dL	0.168 0.015 0.002
Blood Glucose				
Glucose HbA1c Diabetes Mellitus Diagnosis, n(%)	97.0 (88.0 - 117.0) 6.0 (5.4 - 6.8) 22 (26.8)	106.0 (91.0 - 121.0) 5.8 (5.3 - 6.4) 32 (30.9)	mg/dL %	0.210 0.450 0.522
Inflammatory Markers				
ESR CRP	16.0 (6.0 - 33.0) 3.2 (1.2 - 13.1)	20.0 (15.0 - 32.0) 8.2 (2.3 - 37.3)	mm/hr mg/L	0.670 0.183

CHIVE – Clinical features among CH⁺ and CH⁻ patients

CHIVE – Clinical features among CH⁺ and CH⁻ patients indicate increased risk of vascular disease

	CH -	CH +	Unit	p value
Cardiovascular Measurements				
Systolic Blood Pressure	125 (117 - 134)	129 (118 - 139)	mmHg	0.249
Diastolic Blood Pressure	75 (68 - 82)	72 (66 - 78)	mmHg	0.177
Coronary Artery Disease Diagnosis, n(%)	27 (32.9)	55 (55.7)		0.004
Hypertension Diagnosis, n(%)	43 (52.4)	77 (79.4)		<0.001
Clinical Heart Failure Diagnosis, n(%)	8 (9.8)	24 (22.7)		0.035
Brain Natriuretic Peptide	79 (47 - 110)	56 (34 - 184)	pg/mL	0.908
Ejection Fraction	60 (55 - 63)	61 (54 - 68)	%	0.424

Patient ID	Number of Mutations	Mutation	Maximum VAF	High Risk Gene	Average VAF	Type of Malignancy
0004	4	TET2 R1516X	0.398	No	0.217	MDS
		TET2 Q695X	0.369	No		
		SRSF2 P95H	0.177	Yes		
		JAK2 V617F	0.02	Yes		
1060	1	SF3B1 R625C	0.241	Yes	0.236	MDS
1072	Λ	TET2 0742Y	0 422	No	0.227	CMMI
1073	4	SPSE2 D05D	0.422	Ves	0.237	CIVINE
		TET2 V12451 fe*22	0.270	No		
		TET2 N535Kfs*6	0.033	No		
			0.000			
1096	1	TET2 G1288D	0.796	No	0.758	CMML
2026	1	TP53 Y220C	0.676	Yes	0.676	AML
2038	1	TET2 Q749Rfs*15	0.021	No	0.021	MDS

High Risk Variants and progression to MDS/AML in *CHIVE* –

Validation of 'Big Data' restrospective reports with new prospective analysis

CHIVE Rubric for testing

Weeks et al. *NEJM Evid*. 2023 Shannon M, Heimlich B, et al. *Under Revision*.

Summary and next steps

- Clonal hematopoiesis (CH) is an age-associated phenomenon and one of the most impactful conceptual discoveries across disciplines in medicine – we need to understand how to risk assess CHIP.
- Early prospective analysis (200 patients) illustrates similar patterns seen in retrospective data and in CHRS analysis
- Large prospective international, multicenter participation is needed to properly understand risk

3rd Annual Meeting of Somatic Mutations and Predisease Addressing high risk clones

Nashville: October 25-26, 2024

